Explains model parameters, tokens, and scaling laws in plain language. Learn how size, data quality, and training choices affect cost and accuracyβand how to pick the right model for a task.
Visual flowchart/flow diagram would be displayed here
Technical Implementation: ```python
class DeploymentConsiderations:
def init(self):
self.deployment_targets = {
'mobile': {'memory_limit_gb': 2, 'compute_limited': True},
'edge_device': {'memory_limit_gb': 8, 'compute_limited': True},
'cloud_cpu': {'memory_limit_gb': 64, 'compute_limited': False},
'cloud_gpu': {'memory_limit_gb': 24, 'compute_limited': False},
'server_farm': {'memory_limit_gb': 1000, 'compute_limited': False}
}
def assess_deployment_options(self, parameter_count):
"""Determine suitable deployment targets for a model"""
model_size_gb = (parameter_count * 4) / (1024**3)
suitable_targets = []
for target, limits in self.deployment_targets.items():
if model_size_gb <= limits['memory_limit_gb']:
if limits['compute_limited']:
inference_time_ms = parameter_count / 1_000_000
else:
inference_time_ms = parameter_count / 10_000_000
suitable_targets.append({
'target': target,
'memory_usage_percent': (model_size_gb / limits['memory_limit_gb']) * 100,
'estimated_inference_ms': inference_time_ms
})
return {
'model_size_gb': model_size_gb,
'suitable_targets': suitable_targets
}
def create_deployment_guide(self):
"""Create deployment recommendations for different model sizes"""
model_categories = [
('Tiny Model', 1_000_000, 'Mobile apps, IoT devices'),
('Small Model', 10_000_000, 'Mobile apps, edge computing'),
('Medium Model', 100_000_000, 'Desktop apps, edge servers'),
('Large Model', 1_000_000_000, 'Cloud services, dedicated servers'),
('Very Large Model', 10_000_000_000, 'High-end cloud, GPU clusters'),
('Massive Model', 100_000_000_000, 'Specialized infrastructure only')
]
print("Model Deployment Guide:")
print("=" * 80)
for name, param_count, use_cases in model_categories:
analysis = self.assess_deployment_options(param_count)
print(f"\n{name} ({param_count/1_000_000:.0f}M parameters):")
print(f" Model size: {analysis['model_size_gb']:.2f} GB")
print(f" Typical use cases: {use_cases}")
print(f&qu