Skip to content

AI Model Parameters Guide

Explains model parameters, tokens, and scaling laws in plain language. Learn how size, data quality, and training choices affect cost and accuracyβ€”and how to pick the right model for a task.

beginnerβ€’49 / 63

πŸ”§ What Are AI Model Parameters? β€” Conceptual Process β€” Part 5

assive Model', 100_000_000_000) # 100B ] print("Training Feasibility Analysis:") print("=" * 80) for model_name, param_count in model_sizes: analysis = self.assess_training_feasibility(param_count) print(f"\n{model_name} ({param_count/1_000_000:.0f}M parameters):") print(f" Model size: {analysis['model_size_gb']:.2f} GB") print(f" Training memory needed: {analysis['training_memory_required_gb']:.2f} GB") if analysis['feasible_hardware']: cheapest = min(analysis['feasible_hardware'], key=lambda x: x['daily_cost']) print(f" Cheapest option: {cheapest['hardware']} (${cheapest['daily_cost']}/day)") else: print(" No single GPU can train this model - need distributed training") training_analysis = TrainingImplications() training_analysis.compare_training_scenarios()
Section 49 of 63
Next β†’