Explains model parameters, tokens, and scaling laws in plain language. Learn how size, data quality, and training choices affect cost and accuracyβand how to pick the right model for a task.
Visual flowchart/flow diagram would be displayed here
Technical Implementation: ```python
class CNNParameterAnalyzer:
def init(self):
self.layer_types = {
'convolutional': self.calculate_conv_params,
'fully_connected': self.calculate_fc_params,
'batch_norm': self.calculate_bn_params
}
def calculate_conv_params(self, input_channels, output_channels, kernel_size):
"""Calculate parameters in a convolutional layer"""
if isinstance(kernel_size, int):
kernel_size = (kernel_size, kernel_size)
weight_params = kernel_size[0] * kernel_size[1] * input_channels * output_channels
bias_params = output_channels
return weight_params + bias_params
def calculate_fc_params(self, input_size, output_size):
"""Calculate parameters in a fully connected layer"""
return (input_size * output_size) + output_size
def calculate_bn_params(self, num_features):
"""Calculate parameters in a batch normalization layer"""
return 2 * num_features
def analyze_typical_cnn(self):
"""Analyze a typical CNN architecture like ResNet-50"""
layers = [
('conv', {'input_channels': 3, 'output_channels': 64, 'kernel_size': 7}),
('conv', {'input_channels': 64, 'output_channels': 64, 'kernel_size': 3}),
('conv', {'input_channels': 64, 'output_channels': 64, 'kernel_size': 3}),
('conv', {'input_channels': 64, 'output_channels': 128, 'kernel_size': 3}),
('conv', {'input_channels': 128, 'output_channels': 128, 'kernel_size': 3}),
('conv', {'input_channels': 128, 'output_channels': 256, 'kernel_size': 3}),
('conv', {'input_channels': 256, 'output_channels': 256, 'kernel_size': 3}),
('conv', {'input_channels': 256, 'output_channels': 512, 'kernel_size': 3}),
('conv', {'input_channels': 512, 'output_channels': 512, 'kernel_size': 3}),
('fc', {'input_size': 512, 'output_size': 1000})
]
total_params = 0
layer_breakdown = []
for i, (layer_type, config) in enumerat