Skip to content

AI Model Parameters Guide

Explains model parameters, tokens, and scaling laws in plain language. Learn how size, data quality, and training choices affect cost and accuracyβ€”and how to pick the right model for a task.

beginnerβ€’36 / 63

πŸ”§ What Are AI Model Parameters? β€” Conceptual Process β€” Part 5

100 print(f"{component:<20}: {count:>12,} ({percentage:>5.1f}%)") print("=" * 50) print(f"{'Total Parameters':<20}: {params['total_parameters']:>12,}") # Compare to well-known models self.compare_to_known_models(params['total_parameters']) def compare_to_known_models(self, calculated_params): """Compare calculated parameters to known model sizes""" known_models = { 'Small Language Model': 117_000_000, # ~117M (like DistilBERT) 'Base Language Model': 340_000_000, # ~340M (like BERT-Base) 'Large Language Model': 1_500_000_000, # ~1.5B 'Very Large Model': 6_000_000_000, # ~6B 'Massive Model': 175_000_000_000, # ~175B (like GPT-3) 'Ultra-Large Model': 540_000_000_000 # ~540B } print(f"\nComparison to Known Models:") print("-" * 40) closest_model = min(known_models.items(), key=lambda x: abs(x[1] - calculated_params)) print(f"Your model ({calculated_params:,} params) is closest to:") print(f"{closest_model[0]}: {closest_model[1]:,} parameters") # Example: Analyze a medium-sized transformer analyzer = TransformerParameterAnalyzer( vocab_size=50000, hidden_size=1024, num_layers=24, num_heads=16 ) analyzer.show_parameter_breakdown()
Section 36 of 63
Next β†’