Explains model parameters, tokens, and scaling laws in plain language. Learn how size, data quality, and training choices affect cost and accuracyβand how to pick the right model for a task.
beginnerβ’35 / 63
π§ What Are AI Model Parameters? β Conceptual Process β Part 4
=12, num_heads=12):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.num_heads = num_heads
self.head_size = hidden_size // num_heads
def calculate_transformer_parameters(self):
"""Calculate parameters in each component of a transformer"""
# Token embeddings
token_embedding_params = self.vocab_size * self.hidden_size
# Position embeddings (assuming max sequence length of 2048)
position_embedding_params = 2048 * self.hidden_size
# Each transformer layer has several components
single_layer_params = self.calculate_single_layer_params()
total_layer_params = single_layer_params * self.num_layers
# Output layer (language modeling head)
output_layer_params = self.hidden_size * self.vocab_size
return {
'token_embeddings': token_embedding_params,
'position_embeddings': position_embedding_params,
'transformer_layers': total_layer_params,
'output_layer': output_layer_params,
'total_parameters': (token_embedding_params + position_embedding_params +
total_layer_params + output_layer_params)
}
def calculate_single_layer_params(self):
"""Calculate parameters in a single transformer layer"""
# Multi-head attention
# Query, Key, Value projections: 3 * hidden_size * hidden_size
attention_qkv_params = 3 * self.hidden_size * self.hidden_size
# Output projection: hidden_size * hidden_size
attention_output_params = self.hidden_size * self.hidden_size
# Layer normalization parameters (scale and bias)
attention_layernorm_params = 2 * self.hidden_size
# Feed-forward network (typically 4x hidden size)
ffn_hidden_size = 4 * self.hidden_size
ffn_params = (self.hidden_size * ffn_hidden_size +
# First linear layer
ffn_hidden_size +
# First bias
ffn_hidden_size * self.hidden_size +
# Second linear layer
self.hidden_size)
# Second bias
# Second layer normalization
ffn_layernorm_params = 2 * self.hidden_size
return (attention_qkv_params + attention_output_params + attention_layernorm_params +
ffn_params + ffn_layernorm_params)
def show_parameter_breakdown(self):
"""Display detailed parameter breakdown"""
params = self.calculate_transformer_parameters()
print(f"Transformer Model Parameter Breakdown:")
print(f"Architecture: {self.num_layers} layers, {self.hidden_size} hidden size")
print("=" * 50)
for component, count in params.items():
if component != 'total_parameters':
percentage = (count / params['total_parameters']) *