Explains model parameters, tokens, and scaling laws in plain language. Learn how size, data quality, and training choices affect cost and accuracyβand how to pick the right model for a task.
Visual flowchart/flow diagram would be displayed here
Technical Implementation: ```python
class ResourceCalculator:
def init(self):
self.bytes_per_parameter = 4
self.training_memory_multiplier = 4
def calculate_model_size(self, parameter_count):
"""Calculate model size in different units"""
bytes_size = parameter_count * self.bytes_per_parameter
return {
'parameters': parameter_count,
'model_size_bytes': bytes_size,
'model_size_mb': bytes_size / (1024 * 1024),
'model_size_gb': bytes_size / (1024 * 1024 * 1024)
}
def estimate_training_requirements(self, parameter_count):
"""Estimate training resource requirements"""
model_info = self.calculate_model_size(parameter_count)
training_memory_gb = model_info['model_size_gb'] * self.training_memory_multiplier
estimated_gpu_days = parameter_count / 1_000_000_000
return {
'model_size_gb': model_info['model_size_gb'],
'training_memory_gb': training_memory_gb,
'estimated_gpu_days': estimated_gpu_days,
'estimated_cost_range': f"${estimated_gpu_days * 1000:.0f} - ${estimated_gpu_days * 5000:.0f}"
}
def compare_model_requirements(self):
"""Compare resource requirements for different model sizes"""
model_sizes = [
('Small Model', 100_000_000),
('Medium Model', 1_000_000_000),
('Large Model', 10_000_000_000),
('Very Large Model', 100_000_000_000),
('Massive Model', 685_000_000_000)
]
print("Model Resource Requirements Comparison:")
print("=" * 80)
print(f"{'Model':<15} {'Size (GB)':<12} {'Training RAM':<15} {'GPU-Days':<12} {'Cost Est.'}")
print("-" * 80)
for model_name, param_count in model_sizes:
requirements = self.estimate_training_requirements(param_count)
print(f"{model_name:<15} "
f"{requirements['model_size_gb']:<12.1f} "
f"{requirements['training_memory_gb']:<15.1f} "
f"{requirements['estimated_gpu_days']:<12.1f} "