Skip to content

AI Model Parameters Guide

Explains model parameters, tokens, and scaling laws in plain language. Learn how size, data quality, and training choices affect cost and accuracyβ€”and how to pick the right model for a task.

beginnerβ€’23 / 63

πŸ”§ What Are AI Model Parameters? β€” Conceptual Process β€” Part 4

curacy - prev_accuracy efficiency = (accuracy_diff / param_diff) * 1_000_000_000 # per billion params else: efficiency = 0 params_str = f"{params/1_000_000:.0f}M" if params >= 1_000_000 else f"{params/1_000:.0f}K" print(f"{params_str:<12} {accuracy:<10.3f} {time_hours:<15} {efficiency:.2e}") def calculate_diminishing_returns(self): """Show how returns diminish as parameters increase""" improvements = [] for i in range(1, len(self.performance_data)): current = self.performance_data[i] previous = self.performance_data[i-1] param_ratio = current['params'] / previous['params'] accuracy_improvement = current['accuracy'] - previous['accuracy'] improvements.append({ 'param_increase': f"{param_ratio:.1f}x", 'accuracy_gain': f"{accuracy_improvement:.3f}", 'efficiency': accuracy_improvement / (param_ratio - 1) }) print("\nDiminishing Returns Analysis:") print("-" * 50) for improvement in improvements: print(f"Parameter increase: {improvement['param_increase']}") print(f"Accuracy gain: {improvement['accuracy_gain']}") print(f"Efficiency ratio: {improvement['efficiency']:.4f}") print("-" * 30) analyzer = ParameterPerformanceAnalyzer() analyzer.analyze_scaling_laws() analyzer.calculate_diminishing_returns()
Section 23 of 63
Next β†’