AI Model Parameters GuideExplains model parameters, tokens, and scaling laws in plain language. Learn how size, data quality, and training choices affect cost and accuracyβand how to pick the right model for a task.
π§ What Are AI Model Parameters? β Conceptual Process β Part 4 curacy - prev_accuracy
efficiency = (accuracy_diff / param_diff) * 1_000_000_000
# per billion params
else:
efficiency = 0
params_str = f"{params/1_000_000:.0f}M" if params >= 1_000_000 else f"{params/1_000:.0f}K"
print(f"{params_str:<12} {accuracy:<10.3f} {time_hours:<15} {efficiency:.2e}")
def calculate_diminishing_returns(self):
"""Show how returns diminish as parameters increase"""
improvements = []
for i in range(1, len(self.performance_data)):
current = self.performance_data[i]
previous = self.performance_data[i-1]
param_ratio = current['params'] / previous['params']
accuracy_improvement = current['accuracy'] - previous['accuracy']
improvements.append({
'param_increase': f"{param_ratio:.1f}x",
'accuracy_gain': f"{accuracy_improvement:.3f}",
'efficiency': accuracy_improvement / (param_ratio - 1)
})
print("\nDiminishing Returns Analysis:")
print("-" * 50)
for improvement in improvements:
print(f"Parameter increase: {improvement['param_increase']}")
print(f"Accuracy gain: {improvement['accuracy_gain']}")
print(f"Efficiency ratio: {improvement['efficiency']:.4f}")
print("-" * 30)
analyzer = ParameterPerformanceAnalyzer()
analyzer.analyze_scaling_laws()
analyzer.calculate_diminishing_returns()
Section 23 of 63β’ Tip: Use β / β to navigate