Explains model parameters, tokens, and scaling laws in plain language. Learn how size, data quality, and training choices affect cost and accuracyβand how to pick the right model for a task.
beginnerβ’22 / 63
π§ What Are AI Model Parameters? β Conceptual Process β Part 3
ation:
### Visual Architecture Overview
*Interactive visual representation would be displayed here*
For Implementation Details:
### Conceptual Process
*Visual flowchart/flow diagram would be displayed here*
Technical Implementation:
### Visual Architecture Overview
*Interactive visual representation would be displayed here*
For Implementation Details:
### Conceptual Process
*Visual flowchart/flow diagram would be displayed here*
Technical Implementation:
### Visual Architecture Overview
*Interactive visual representation would be displayed here*
For Implementation Details:
### Conceptual Process
*Visual flowchart/flow diagram would be displayed here*
Technical Implementation:
### Visual Architecture Overview
*Interactive visual representation would be displayed here*
For Implementation Details:
### Conceptual Process
*Visual flowchart/flow diagram would be displayed here*
Technical Implementation:
### Visual Architecture Overview
*Interactive visual representation would be displayed here*
For Implementation Details:
### Conceptual Process
*Visual flowchart/flow diagram would be displayed here*
Technical Implementation:
### Visual Architecture Overview
*Interactive visual representation would be displayed here*
For Implementation Details:
### Conceptual Process
*Visual flowchart/flow diagram would be displayed here*
Technical Implementation: ```python
class ParameterPerformanceAnalyzer:
def __init__(self):
# Simulated relationship between parameters and performance
self.performance_data = [
{'params': 1_000_000, 'accuracy': 0.75, 'training_time_hours': 1},
{'params': 10_000_000, 'accuracy': 0.82, 'training_time_hours': 4},
{'params': 100_000_000, 'accuracy': 0.87, 'training_time_hours': 20},
{'params': 1_000_000_000, 'accuracy': 0.91, 'training_time_hours': 100},
{'params': 10_000_000_000, 'accuracy': 0.93, 'training_time_hours': 500},
{'params': 100_000_000_000, 'accuracy': 0.95, 'training_time_hours': 2000}
]
def analyze_scaling_laws(self):
print("Parameter Scaling Analysis:")
print("-" * 60)
print(f"{'Parameters':<12} {'Accuracy':<10} {'Training Time':<15} {'Efficiency'}")
print("-" * 60)
for i, data in enumerate(self.performance_data):
params = data['params']
accuracy = data['accuracy']
time_hours = data['training_time_hours']
# Calculate efficiency (accuracy improvement per parameter)
if i > 0:
prev_accuracy = self.performance_data[i-1]['accuracy']
param_diff = params - self.performance_data[i-1]['params']
accuracy_diff = ac