Skip to content

AI Model Parameters Guide

Explains model parameters, tokens, and scaling laws in plain language. Learn how size, data quality, and training choices affect cost and accuracyβ€”and how to pick the right model for a task.

beginnerβ€’11 / 63

πŸ”§ What Are AI Model Parameters? β€” Conceptual Process β€” Part 3

ptual Process *Visual flowchart/flow diagram would be displayed here* Technical Implementation: ### Visual Architecture Overview *Interactive visual representation would be displayed here* For Implementation Details: ### Conceptual Process *Visual flowchart/flow diagram would be displayed here* Technical Implementation: ### Visual Architecture Overview *Interactive visual representation would be displayed here* For Implementation Details: ### Conceptual Process *Visual flowchart/flow diagram would be displayed here* Technical Implementation: ### Visual Architecture Overview *Interactive visual representation would be displayed here* For Implementation Details: ### Conceptual Process *Visual flowchart/flow diagram would be displayed here* Technical Implementation: ### Visual Architecture Overview *Interactive visual representation would be displayed here* For Implementation Details: ### Conceptual Process *Visual flowchart/flow diagram would be displayed here* Technical Implementation: ```python class SimpleNeuralNetwork: def __init__(self, input_size, hidden_size, output_size): self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size # Calculate total parameters # Layer 1: input_size * hidden_size weights + hidden_size biases self.layer1_params = (input_size * hidden_size) + hidden_size # Layer 2: hidden_size * output_size weights + output_size biases self.layer2_params = (hidden_size * output_size) + output_size self.total_parameters = self.layer1_params + self.layer2_params def show_parameter_breakdown(self): print(f"Network Architecture: {self.input_size} -> {self.hidden_size} -> {self.output_size}") print(f"Layer 1 parameters: {self.layer1_params}") print(f"Layer 2 parameters: {self.layer2_params}") print(f"Total parameters: {self.total_parameters}") # Example: Small image classifier # Input: 784 pixels (28x28 image), Hidden: 128 neurons, Output: 10 classes small_network = SimpleNeuralNetwork(784, 128, 10) small_network.show_parameter_breakdown() # Output: # Network Architecture: 784 -> 128 -> 10 # Layer 1 parameters: 100,480 (784*128 + 128) # Layer 2 parameters: 1,290 (128*10 + 10) # Total parameters: 101,770
Section 11 of 63
Next β†’