Understanding user retention, engagement, and success metrics for AI-powered products
Conversation Metrics
class ConversationMetrics:
def __init__(self):
self.conversation_tracker = ConversationTracker()
self.quality_analyzer = QualityAnalyzer()
self.engagement_calculator = EngagementCalculator()
def calculate_engagement_score(self, user_id, timeframe):
conversations = self.conversation_tracker.get_user_conversations(
user_id, timeframe
)
frequency = len(conversations) / timeframe.days
avg_length = sum(conv.length for conv in conversations) / len(conversations)
task_completion = self.calculate_task_completion(conversations)
quality_score = self.quality_analyzer.average_quality(conversations)
return {
'frequency_score': min(frequency / 10, 1.0),
'depth_score': min(avg_length / 20, 1.0),
'completion_score': task_completion,
'quality_score': quality_score,
'overall_engagement': (
frequency_score * 0.3 +
depth_score * 0.2 +
completion_score * 0.3 +
quality_score * 0.2
)
}
2. **Retention Patterns**
- Cohort Analysis: Track user groups over time
- Usage Segmentation: Light, medium, heavy user patterns
- Churn Prediction: Identify at-risk users
- Reactivation Success: Measure return user effectiveness
### Quality and Satisfaction Metrics
1. **Task Completion Rate**
```python
class TaskCompletionTracker:
def __init__(self):
self.task_classifier = TaskClassifier()
self.completion_detector = CompletionDetector()
def track_completion(self, conversation):
# Identify user's intended task
intended_task = self.task_classifier.identify_task(conversation)
# Determine if task was completed successfully
completion_status = self.completion_detector.evaluate_completion(
conversation, intended_task
)
return {
'task_type': intended_task,
'completed': completion_status.success,
'confidence': completion_status.confidence,
'time_to_completion': completion_status.duration,
'user_satisfaction': completion_status.user_feedback
}
Value Realization
Growth and Expansion