RustGPT demonstrates creating transformers solely with Rust's ndarray for tensors, avoiding PyTorch/TensorFlow for performance and control.
[dependencies]
ndarray = "0.15"
use ndarray::Array2;
fn self_attention(q: &Array2<f32>, k: &Array2<f32>, v: &Array2<f32>) -> Array2<f32> {
// Compute attention scores
let scores = q.dot(&k.t()); // Simplified
// Softmax and apply to V
scores.dot(&v)
}
// Forward pass, loss computation with basic optimizer