Skip to content

ML Infrastructure Programming

Domain-specific languages and programming paradigms for machine learning infrastructure development

advanced3 / 8

Domain-Specific Languages for ML

DSL Design Principles#

  1. Abstraction Level

    • High enough for ML practitioners to use effectively
    • Low enough to enable hardware-specific optimizations
    • Familiar syntax and semantics for target audience
    • Composable and modular design
  2. Performance Optimization

    • Automatic kernel fusion and optimization
    • Memory access pattern optimization
    • Hardware-specific code generation
    • Runtime adaptation and tuning
  3. Developer Experience

    • Debugging and profiling tools
    • Integration with existing ML workflows
    • Clear error messages and documentation
    • Gradual learning curve

Helion DSL Deep Dive#

Architecture Overview:#

  • Python-embedded DSL for ML kernel authoring
  • Compiles to Triton for GPU execution
  • PyTorch-like syntax for familiarity
  • Ahead-of-time autotuning engine

Key Features:#


# Helion DSL example
import helion

@helion.kernel
def matmul_kernel(a, b, c, M, N, K):

# PyTorch-like syntax
    for i in helion.grid(M):
        for j in helion.grid(N):
            acc = 0.0
            for k in range(K):
                acc += a[i, k] * b[k, j]
            c[i, j] = acc

Autotuning Engine:#

  • Automatic search space exploration
  • Performance model-guided optimization
  • Hardware-specific parameter tuning
  • Caching of optimal configurations
Section 3 of 8
Next →