LLM inference bottlenecks arise from coupled prefill (prompt processing) and decode (token generation) phases. Disaggregation separates them for parallel scaling.
pip install torch vllm
from vllm import LLM, SamplingParams
llm = LLM(model="meta-llama/Llama-2-7b-hf", tensor_parallel_size=2)
import torch
outputs = llm.generate(prompts, sampling_params)
## Example
In a chat app: Prefill user queries on cluster A (fast embedding), decode responses on cluster B (streaming output).
## Evaluation
- Metrics: Tokens/sec, latency percentiles.
- Trade-offs: Network overhead vs. resource efficiency.
## Conclusion
Disaggregation unlocks LLM scalability; integrate with orchestration tools like Ray for production.