Skip to content

Advanced Linux AI Development & Containerization

Master advanced Linux development tools, Python environments, Docker containerization, and professional AI deployment workflows on Linux systems.

advanced4 / 5

Python Environment Management


# Download Miniforge installer

wget <https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-Linux-x86_64.sh>

# Make executable and install

chmod +x Miniforge3-Linux-x86\_64.sh
./Miniforge3-Linux-x86\_64.sh

# Follow installation prompts, then restart shell

source ~/.bashrc

Create AI Development Environment#


# Create conda environment for AI development

conda create -n ai-dev python=3.11 -y
conda activate ai-dev

# Install essential AI packages

conda install -y \
numpy \
pandas \
matplotlib \
seaborn \
scikit-learn \
jupyter \
jupyterlab \
ipython

# Install PyTorch (CPU version for now)

conda install pytorch torchvision torchaudio cpuonly -c pytorch

# Install additional packages with pip

pip install \
transformers \
openai \
anthropic \
langchain \
streamlit \
fastapi \
uvicorn \
requests \
beautifulsoup4 \
selenium

GPU Support Setup (If Available)#


# Check for NVIDIA GPU

nvidia-smi

# Install CUDA toolkit (if GPU available)

wget <https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/cuda-wsl-ubuntu.pin>
sudo mv cuda-wsl-ubuntu.pin /etc/apt/preferences.d/cuda-repository-pin-600
sudo apt-key adv --fetch-keys <https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/3bf863cc.pub>
sudo add-apt-repository "deb <https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/> /"
sudo apt update
sudo apt install -y cuda-toolkit-12-2

# Install PyTorch with CUDA support

conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
Section 4 of 5
Next →