Dive into advanced techniques for 3D reconstruction and asset generation using open-source feed-forward models, covering single/multi-view inputs, Gaussian splatting, and physically-based rendering for simulation-ready assets.
Leverage open-source libraries like Nerfstudio, Gaussian-Splatting, or Hugging Face Diffusers.
pip install torch torchvision nerfstudio gaussian-splatting
# For inputs: diffusers transformers
Use models like Instant3D or Zero-1-to-3.
from diffusers import StableDiffusionPipeline
import torch
# Load a 3D-capable pipeline (e.g., adapted for depth)
pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", torch_dtype=torch.float16)
pipe = pipe.to("cuda")
prompt = "A red sports car on a racetrack"
image = pipe(prompt).images[0]
# Post-process image to depth map (e.g., MiDaS)
# Then reconstruct 3D using feed-forward model
For advanced: Integrate Hunyuan-like models (if available on HF).
# Pseudo-code for universal recon
from transformers import pipeline
generator = pipeline("text-to-3d", model="open-source-3d-model")
# Placeholder
outputs = generator(
inputs={"text": "Urban park with benches", "image": image_path, "video": video_path},
return_type="multi"
# point_cloud, depth_maps, splats
)
# Save outputs
point_cloud = outputs["point_cloud"]
# .ply format
splats = outputs["gaussian_splats"]
# For rendering
1. Input: Multi-view images.
2. Optimize: `python train.py -s data/inputs`.
3. Render: Novel views with real-time speeds.
Full Example: Generate asset from single image.